
Goddard Dynamic Simulator

Ada Coding Standard

Stephen Leake

14 April 2014

1 Introduction

This document presents the coding standards used by the Goddard Dynamic
Simulator project for the Ada language. There are two primary goals for these
coding standards:

• Provide a common style for Ada code, so it can be comfortably read by
all programmers on the project.

• Make the Ada language easier to use, by giving guidelines on using complex
features.

This standard sets the policy for the appropriate use of Ada language constructs,
identifier naming conventions, and general source code layout. It also suggests
coding patterns for use with Ada.

In addition, it extends the unit testing standard, in areas that are unique to
Ada.

The standards described in this document are either mandatory or discretionary.
Mandatory standards are requirements that must be followed. These are indi-
cated by the word “shall”. Discretionary standards are guidelines that allow
some judgment or personal choice by the programmer. These standards are
indicated by the use of the word “should”. A programmer should have a good
reason when they choose to disregard a discretionary standard. Where possible,
this document gives examples of acceptable deviations. A mandatory standard
can be waived by the development lead for specific cases, where appropriate.

In this document, paragraphs labeled by a number in parentheses (n) are stan-
dards; other paragraphs are explanatory text.

GDS Ada Coding Standard
http://gds.gsfc.nasa.gov/code standards ada.pdf

1



3 FILE AND PACKAGE NAMING CONVENTIONS

The primary mode of reading code is assumed to be on a computer screen, with
an editor that provides syntax colorization and code navigation. There will be a
few times, primarily at code reviews, when code will be printed out. The coding
standards reflect this bias towards on-screen viewing.

It is easier to combine code into a system, and to maintain the code, if all of the
code conforms to a particular style. Since Ada is new to many programmers,
and the general Ada community shares a fairly standard style, we require a
particular style. See Figure 1 for an example of the style.

2 Language

1. The code shall only use Ada language constructs as defined by ISO/IEC
8652:2012(E) Information Technology – Programming Languages – Ada.
An exception is allowed if a preprocessor is needed for portability; then
the constructs defined by the GNAT preprocessor gnatprep are allowed.

The Ada 2005 Language Reference Manual is available at

http://www.adaic.org/standards/ada05.html.

2. Non-standard pragmas shall require a waiver and full documentation.

3. The non-standard GNAT pragma “Unreferenced” is granted a waiver.

4. All source files shall consist of printable ASCII characters, with no tabs
or form feeds, and no trailing spaces on lines, maximum of 120 characters
per line.

3 File and Package Naming Conventions

3.1 File names

1. Each source file shall contain one compilation unit.

2. The filename shall be the full Ada unit name, all lowercase, with “.”
replaced by “-”. This is the default naming convention used by the GNU
Ada compiler (GNAT). An exception is allowed when different bodies
are required for different targets; in that case the filename shall be the
standard file name, with a suffix indicating the target.

3. Specification files shall have an extension of .ads. Body files shall have
an extension of .adb.

4. Files that contain preprocessor constructs shall have a second extension
of .gp (for gnatprep). Thus the file foo.ads.gp is processed by gnatprep
to produce the file foo.ads.

http://www.adaic.org/standards/ada05.html


3.2 Package names 4 FILE LAYOUT

3.2 Package names

1. If unit test drivers are a child procedure of the unit package, they shall
have the name Test. For example, the unit test driver for package Foo

is Foo.Test. This gives the unit test access to the private part of the
package.

2. Generic packages shall have a name that starts with Gen_ or Generic_.

3. Unit tests for generic packages may either be children of a nominal instan-
tiation of the package, or a main procedure that instantiates the package.
If the latter, the name shall drop the generic prefix, and add a _Test

suffix. So a test for SAL.Filters.Gen_First_Order would be named
SAL.Filters.First_Order_Test.

4 File layout

1. The file shall be introduced by a block comment that contains a file pro-
logue (see Figure 1). The file prologue consists of:

Abstract A short statement that describes the purpose of the file. In a
package body, the abstract should just refer to the specification.

References List all applicable documentation references. Identify each
reference to a level of detail that allows the information to be found
but not to a level that will likely change. Provide version numbers
when applicable.

If a reference applies to several related packages, provide the reference
only in the spec of the common parent package, to avoid duplicating
information and simplify the process of updating the version.

Design Notes List design decisions that apply to the general design of
the code. Give a brief justification for each decision; for example, list
the alternatives and say why they were rejected. Longer justifications
may be given in a separate design document.

Copyright Copyright or disclaimer notice. Copyright dates should be in
one of the following formats: ”year1, year2” or ”year1 - year n” if
the years are consecutive.

2. Context clauses shall list one package per line. If a “use” clause is present,
it should be on the same line as the corresponding “with”.

3. Declarations should be grouped logically. A group label comment should
be used to separate logical groups:

----------

-- Orientation operations



6 COMMENTS

4. When there are more than five subprograms in a group, they should be
listed alphabetically within the group.

5. Operations of tagged types should be grouped into “class-wide” and “dis-
patching” groups.

6. Operations of derived types should be grouped into “overriding” and
“new” groups.

5 Style enforcing tools

Style rules are easier to follow when tools are available to enforce them, or
automate using them. We define the required style in part by the tools given
here. The style requirements given in the rest of this document should conform
to this definition; however, when there is a conflict, the tool is correct.

1. Code shall be indented as defined by the GNU Emacs Ada mode, as
distributed with Emacs (version 21.2 or higher), or as distributed by ACT,
with the following settings (other settings have their default values):

• (setq ada-when-indent 0)

• (setq ada-label-indent 0)

2. Groups of statements, record declarations, and named parameter associa-
tions shall be aligned by the standard Emacs package align.el.

3. Code shall conform to the GNAT (version 3.16a or higher) style check
compiler option -gnaty3abefhiklM120nprt. See the GNAT User’s Guide
for more information.

6 Comments

Comments are important in developing readable and maintainable code. Pro-
grammers should include comments whenever it is difficult to understand the
code without the comments.

On the other hand, comments should not simply say the same thing the code
does, as this only serves to obscure required comments. Describe why something
is being done first, and only describe what is being done if it isn‘t obvious by
the code itself.

Comments can be classified by size:



6 COMMENTS

Figure 1: Example package specification file

-- Abstract:

--

-- General utilities for star tracker models.

--

-- References:

--

-- [1] Star Tracker Component

--

-- Design Notes:

--

-- Catalog_Type is abstract tagged to provide a common interface to different

-- catalog implementations.

--

-- Disclaimer

--

-- <standard NASA disclaimer>

--

with Ada.Numerics.Float_Random;

with Math_3_DOF;

with Math_Scalar;

package HDS.Star_Tracker is

----------

-- Orientation operations

function Aberration

(GCI_q_ST : in Math_3_DOF.Unit_Quaternion_Type;

ST_Boresight : in Math_3_DOF.Unit_Vector_Type := Math_3_DOF.Z_Unit;

GCI_Sun_v_Earth : in Math_3_DOF.Cart_Vector_Type;

GCI_Earth_v_Sc : in Math_3_DOF.Cart_Vector_Type)

return Math_3_DOF.Unit_Quaternion_Type;

-- Return relativistic velocity aberration quaternion ST_q_Ab.

---------------

-- Star vector operations

type Star_ID_Type is new Integer;

Unknown : constant Star_ID_Type := -1;

type Star_Vector_Type is record

ID : Star_ID_Type := Unknown;

Vector : Math_3_DOF.Unit_Vector_Type := Math_3_DOF.X_Unit;

Magnitude : Math_Scalar.Float_Type := 0.0;

end record;

Unknown_Star : constant Star_Vector_Type :=

(ID => Unknown,

Vector => Math_3_DOF.X_Unit,

Magnitude => 0.0);

end HDS.Star_Tracker;



6 COMMENTS

• Long or block comments are those that can not fit on a single 80 character
line.

• Short comments are those that can fit on a single 80 character line (note
that this is shorter than the code line length limit).

• Same-line comments are small enough to include on the same line as the
code that the comment supports.

1. Each line of a comment shall start with two spaces after the two hyphens,
for compatibility with Emacs Ada mode.

2. Functional blocks of code should have a long comment before the actual
code instead of placing a comment on each line. This comment should
describe the basic purpose of the code. The comment should consist of
complete English sentences.

3. A variable’s units of measurement should be stated in a comment if they
are not the SI standard units, as defined at http://www.bipm.org/en/si/.
It is preferable to use units with no prefix, except kilograms.

4. Change log comments shall not be in the source code; use a configuration
management tool instead.

5. Old versions of the code shall not be maintained in the comments; use a
configuration management tool instead.

6. A special comment format shall be used to document compiler workarounds.
This allows finding and fixing the workarounds when a new compiler ver-
sion is released.

-- WORKAROUND: <compiler version> <description>

7. A special comment format shall be used to document an incomplete im-
plementation:

-- FIXME: <description>

8. Another special comment format shall be used to document an implemen-
tation that could be improved:

-- IMPROVEME: <description>

http://www.bipm.org/en/si/


8 INDENTATION

7 Identifier Naming conventions

The proper naming of packages, types, subprograms and variables can increase
the readability and understanding of the software. Poorly named functions
and variables can add a great deal of misunderstanding and confusion. Careful
consideration should be given to how others will perceive the name, and what
they will think it means. An object‘s name should provide insight into its use
and purpose.

1. Identifiers should consist of more than one character. Valid exceptions
are for variables used in local indexing operations (e.g., i, j, k) and very
mathematical code where the identifier matches the standard symbol used
in an algorithm or equation.

2. Ada reserved words shall be all lowercase, except when used as attributes.

3. Acronyms shall be all upper case. Each project shall maintain a list of
approved acronyms.

4. All other identifiers shall be mixed case, with underscores separating
words. Acronyms that are part of a larger identifier shall be uppercase.
This style is often called Mixed_Case_With_Underscores. This is the
most common style for Ada code, and with an editor that does the capi-
talization automatically, is easier to type than MixedCaseNoUnderscores.

5. The names of all types not defined by the language shall end with a suffix
of _Type. This allows using the same general name for the type and an
object: List : List_Type;

6. Capitalization of identifiers shall be consistent among all occurrences of
the identifier. The GNAT style check compiler option checks this.

7. The optional name at the end of a named construct (ie. procedures,
functions) shall always be present.

8. The name of a scale factor shall use “per” rather than “to”. For ex-
ample, to convert from minutes to seconds, use Seconds_Per_Minute,
not Minutes_to_Seconds. This makes it clear how to use the constant:
Seconds = Seconds_Per_Minute * Minutes.

8 Indentation

1. All code shall be indented three spaces for each indentation level.

2. Statements at the same logical nesting level shall be at the same indenta-
tion level.



9 SUBPROGRAMS

3. The indentation of a long or short comment shall be the same as the code
it describes.

4. There should be only one statement per line.

5. Blank lines should be used between blocks of code that are functionally
distinct.

6. In expressions, operators should be surrounded by blanks, except for prefix
operators. This is enforced by the GNAT style checks.

7. Long lines should be broken after operators or commas.

8. Continuation lines shall be indented one level.

9 Subprograms

9.1 Specification

1. A procedure specification shall have the one of the following formats:

[[not] overriding] procedure Name (Arg_1 : <mode> <type>; Arg_2 : <mode> <type>);

[[not] overriding] procedure Name

(Arg_1 : <mode> <type [:= <default>];

Arg_2 : <mode> <type [:= <default>]);

2. A function specification shall have the one of the following formats:

[[not] overriding] function Name (Arg_1 : <mode> <type>; Arg_2 : <mode> <type>) return

[[not] overriding] function Name

(Arg_1 : <mode> <type> [:= <default>];

Arg_2 : <mode> <type> [:= <default>])

return <result_type>;

Ada allows the mode to be left out in functions, since it must always
be “in”. However, we require that it be present, for consistency with
procedures.

3. The keyword overriding shall be present if the subprogram is intended
to override an inherited operation. The compiler has an option to enforce
this.



9.2 Body 9 SUBPROGRAMS

4. In some cases, the GNAT runtime code does not have overriding where
it should, resulting in a compile-time style error. The fix is to add pragma

Style_Checks (Off, ); on the entity that causes the problem, or to sur-
round the line of code with pragma Style_Checks (Off); .. pragma

Style_Checks (On);

5. All multi-line parameter lists shall have the format given by the Emacs
Ada mode align function.

6. Each subprogram declaration shall be followed by a block comment giving
a description of the subprogram, including its purpose and how each ar-
gument is used. For simple subprograms with clear argument names, the
descriptive comment can be empty. For a very complex subprogram, the
description should just reference separate documentation.

9.2 Body

1. A subprogram body shall have one of the following formats:

[[not] overriding] procedure Name (Arg_1 : <mode> <type>; Arg_2 : <mode> <type>)

is

Local_Var_1 : <type> [:= <default>];

begin

<sequence_of_statements>

end Name;

[[not] overriding] procedure Name

(Arg_1 : <mode> <type [:= <default>];

Arg_2 : <mode> <type [:= <default>]);

is

Local_Var_1 : <type> [:= <default>];

begin

<sequence_of_statements>

end Name;

Putting the “is” on a separate line cleanly separates the parameter list
from the local variable list.

2. The keywords not overriding shall be present if they are on the corre-
sponding specification. The compiler has an option to enforce this.

3. A function body shall have one of the following formats:

function Name (Arg_1 : <mode> <type>; Arg_2 : <mode> <type>) return result_<type>

is

Local_Var_1 : <type> [:= <default>];



9.3 Call 9 SUBPROGRAMS

begin

<sequence_of_statements>

end Name;

function Name

(Arg_1 : <mode> <type> [:= <default>];

Arg_2 : <mode> <type> [:= <default>])

return <result_type>

is

Local_Var_1 : <type> [:= <default>];

begin

<sequence_of_statements>

end Name;

9.3 Call

1. Argument lists that do not fit on one line should have one argument per
line, starting on the line after the subprogram name:

Name (Arg_1 => Arg_1_Value, Arg_2 => Arg_2_Value);

Name

(Arg_1 => Arg_1_Value,

Arg_2 => Arg_2_Value);

One point to remember is that indentation should never depend on the
length of a name.

2. If there are many arguments, and named association is not needed, they
may be grouped on one line:

Name

(Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6,

Arg_7, Arg_8, Arg_9, Arg_A, Arg_B, Arg_C);

3. Named association should be used whenever the association of value to
parameter might be ambiguous or confusing.

In particular, if two or more arguments have the same type, named asso-
ciation should be used.

4. A useful style is to group little-used parameters with defaults at the end
of a parameter list, and only use named association for them when they
are not defaulted:

Name

(Arg_1, Arg_2,

Verbosity => 2);



10 ACCESS TYPES

10 Access types

It is often difficult to decide whether to use an ’in’ (or ’in out’) parameter of
a type, an ’access’ parameter of type, or an ’in’ parameter of an access type,
particularly for class-wide types, since they almost always require an access type
at some point. Then it seems that a lot of clients need .all if the parameter is
’in’. However, in practice, when you change from ’access’ to ’in’ for a complex
subprogram, particularly if it passes that parameter on to others, it is often not
clear whether you are adding or deleting more .all uses.

On the other hand, some simple subprograms (typically Set and Get) will only
ever be called with an object that was directly declared to be of a named access
type, and have only very simple references to the parameter in their body. In
that case it is clearly better to use a few .all in the simple body than in every
call, so the subprogram should use the named access type.

Using an access parameter (either an explicit type or anonymous type) only
when strictly required by the body makes it clearer when access types are ac-
tually needed, which helps when considering how to redesign a subprogram to
add a feature.

There is one situation where an ’in’ parameter is required; when converting to
a type lower in a derived type hierarchy. For example:

declare

Owner : constant access Modules.Module_Type’Class := Symbols.Owner (Symbol);

begin

if Owner.all in Modules.Hardware.Module_Type’Class then

Modules.Hardware.Checked_Write_Command (Modules.Hardware.Module_Type’Class (Owner.all),

...

In this case, Checked_Write_Command must be declared with an ’in’ parameter
of the class-wide type. If it had been declared as an ’access’ parameter, the type
conversion would not be possible, since there is no type name that matches. An
’in’ parameter of an access type would not be dispatching.

Another situation requires a different solution. If a derived type hierarchy has
a parallel named access type hierarchy, it may be necessary to use anonymous
access to class-wide parameters:

package GDS.Threads.Distribute is

procedure Add_Communicate_1

(Chassis : in Chassis_ID_Type;



10 ACCESS TYPES

Direction : in Direction_Type;

Symbol : access constant GDS.Symbols.Symbol_Type’Class);

-- Store Symbol in the Communicate_1 list.

end;

package body GDS.Modules.Executor.Wrapper is

Time_Sync_Valid : GDS.Symbols.Times.Symbol_Access_Type := ...;

procedure Build_Remote_Lists (Module : in Module_Type)

is begin

Add_Communicate_1 (Module.Chassis_ID, TX, Time_Sync_Valid);

end;

end;

In this case, since Add_Communciate_1 is storing Symbol in a list, we would
like to specify the exact named access type used in the list. However, that
is GDS.Symbols.Symbol_Access_Type; a class-wide pointer to the root of the
hierarchy. On the other hand, Time_Sync_Valid is declared with a lower-level
named access type, to avoid run-time checks.

If Add_Communicate_1were declared with GDS.Symbols.Symbol_Access_Type,
an explicit type conversion would be required at the call in Build_Remote_Lists.

Using an anonymous access type avoids that explicit conversion.

1. Use an ’in’ or ’in out’ parameter of a non-access type, unless an access
type is required by the body, even if that means most clients will need
.all to call the subprogram.

Exceptions to this rule are allowed for simple subprograms (for example
Set and Get) that will only ever be called with an object that was directly
declared to be of a named access type, and have only very simple references
to the parameter in their body. In that case, the subprogram should use
the named access type. Each such subprogram must be clearly labeled
with a comment explaining the exception.

2. If an ’access’ parameter is used, ’constant’ must also be specified if the
value is not changed by the subprogram.

3. Use a named access type parameter when the pointer will be stored in a
list or other structure; then use exactly the same access type as used in
the list (except as noted in the next rule). Otherwise use an anonymous
access type.

Using a named access type as the parameter type forces the compile and
run-time checks to be done at the point of the call, making it easier to
understand when there is a problem.



11 STATEMENTS

4. If a subprogram would use a named access type by the previous rule, but
will typically be passed a named access type lower in the hierarchy, use
an anonomous access type equivalent to the root named access type. Be
sure to include constant if applicable.

11 Statements

11.1 Variable declarations

1. Each variable declaration shall declare only one variable. For example:

One_List : List_Type;

Another_List : List_Type;

not:

One_List, Another_List : List_Type; -- wrong!

2. A declared variable shall be initialized only when an algorithm requires
that the variable have an initial value.

11.2 if Statements

1. An if statement shall have one of the following formats:

if condition then

statement;

[elsif condition then

statement;]

else

statement;

end if;

if long-condition

continued-condition

then

statement;

[elsif

long-condition

then

statement;]

else

statement;

end if;



11.3 Short cut Boolean operators 12 MISCELLANEOUS

The else clause is optional. These formats are checked by the GNAT style
check.

11.3 Short cut Boolean operators

The short cut Boolean expressions are or else and and then. They prevent ex-
ecution of the right expression if the left expression is true or false, respectively.
These should only be used when the right expression will raise an exception if
executed.

Programmers are often tempted to use the short cut expressions to “optimize”
the code. The compiler is far better at optimizing than the most programmers,
and optimizing at this level is a waste of programmer time until timing mea-
surements prove it is necessary. It is better to use the presence of a short cut
operator to indicate a possible exception.

11.4 case Statement

1. A case statement shall have the following format:

case expression is

when constant_expression_1 =>

statements;

when constant_expression_2 =>

statements;

end case;

2. A when others clause shall only be present if the case statement is not
exhaustive. Most case statements should be exhaustive, so the compiler
will warn you when a value is added to the case expression type.

12 Miscellaneous

1. Named association shall be used for subprogram parameters and aggre-
gates whenever the parameter order is not fully determined by the types.
For example, if a subprogram has two parameters of type Integer, named
association must be used to distinguish them.

For example, Ada.Strings.Fixed declares the Index function:

function Index

(Source : in String;

Pattern : in String;



12 MISCELLANEOUS

Going : in Direction := Forward;

Mapping : in Maps.Character_Mapping := Maps.Identity)

return Natural;

It is easy to confuse the Source and Pattern parameters, so named asso-
ciation must be used in a call:

Comma := Index (Source => "hello, world", Pattern => ",");

2. Named association shall be used for all generic instantiations.

3. A use clause may be given for a package only in a package or subprogram
body, not in a package specification or among the with statements pre-
ceeding the package body. The scope of the use clause should be limited
as much as reasonable.

Use clauses make for more compact code, with the tradeoff of making it
more difficult to understand where identifiers are declared. In package
specifications, it is more important to understand the relationship with
other packages, so use clauses are not used. In bodies, it is more important
to allow for compact code, which makes it easier to understand the control
flow.

For a subprogram body, a good rule of thumb is if a package name would
appear in more than 4 statements, a use clause is appropriate.

4. Every thread shall have a catch all exception handler either in the main
loop or at the top level in the task body, that prints an error message
to Ada.Text_IO.Standard_Error, so the user will know if the thread is
terminating.

5. The Ada 2005 construct raise <exception_name> with "message"; is
prefered over the Ada 95 Ada.Exceptions.Raise_Exception.

6. The extended return statement shall only be used in a function whose
result type is an anonymous access type.

The Ada 2005 extended return statement declares the return object in a
nested scope (different than the function scope). This is only necessary
when the function result type is an anonymous access type; it allows the
accesibility level of the result object to be that required at the point of
call, rather than that of the function.

Thus use of the extended return statement indicates an accesibility level
issue; use in other contexts would be confusing.

7. The keyword overriding preceding a subprogram declaration should be
present if it is legal.

This indicates the subprogram must override some inherited operation.
This gives an error if the operation on the parent type is changed, alerting
the programmer to change the overriding operation as well.



14 UNIT TESTS

8. A subprogram declaration of the form procedure ... is null; is pref-
ered over an actual null body.

9. ’Floor By default, elisp and C truncate on conversion from floating point
to integer; Ada rounds. ’Floor can be used to obtain the C or elisp
behavior.

Another possible use for ’Floor is to model an analog to digital converter;
the integer output is the highest integer that corresponds to a voltage that
is less than the actual voltage. However, ’Floor should not be used for
this purpose, because it is too harsh. Round off error can cause a number
that should be an exact integer to be slightly less, and floor drops it to one
whole integer less. This causes significant errors in the model. Rounding
avoids the problem, because we don’t care whether half-counts are exact
in an analog to digital converter model; converters are only accurate to
half a bit anyway.

13 Importing C code

1. Some C functions have both an “out” parameter and a non-void func-
tion result. To import these into Ada, use the GNAT-specific pragma
Import_Valued_Procedure. This must be used in conjuction with pragma
Import. For example:

procedure M1553_Read_Sa_Control_Buffer

(Status : out Status_Type;

Device : in Interfaces.Unsigned_16;

Buffer_Id : in Interfaces.Unsigned_32;

Buffer : out Sa_Control_Buffer_Type);

pragma Import (C, M1553_Read_Sa_Control_Buffer);

pragma Import_Valued_Procedure (M1553_Read_Sa_Control_Buffer, "m1553_read_sa_control

14 Unit Tests

See 582 Branch Unit Test Standard for the base unit testing standard. This
section presents unit test standards that are unique to Ada.

1. Fixed point types shall have unit tests that verify the range.

Fixed point types are useful for matching packet formats, but it is easy
to get the range wrong. Unit tests should show that the type allows the
expected range of values.

http://fsb.gsfc.nasa.gov/StandardsCCB/Documents/582UnitTestStandard2006_12_08.pdf

	1 Introduction
	2 Language
	3 File and Package Naming Conventions
	3.1 File names
	3.2 Package names

	4 File layout
	5 Style enforcing tools
	6 Comments
	7 Identifier Naming conventions
	8 Indentation
	9 Subprograms
	9.1 Specification
	9.2 Body
	9.3 Call

	10 Access types
	11 Statements
	11.1 Variable declarations
	11.2 if Statements
	11.3 Short cut Boolean operators
	11.4 case Statement

	12 Miscellaneous
	13 Importing C code
	14 Unit Tests

